
BATTERY RESISTANCE TESTER

UT677A+ User manual

Table of contents

1.	Safety rules and precautions	. 20
2.	Introduction	. 20
3.	Range and accuracy	. 21
	3.1 Resistance measurement accuracy	. 21
	3.2 Voltage measurement accuracy	. 21
4.	Technical Specifications	. 21
5.	Instrument structure	. 23
6.	Interface display	. 23
	6.1 Interface Icons and Symbols	. 23
7.	Measurement principle	
	7.1 Principle of AC 4-terminal test method	. 24
	7.2 Voltage Measurement Principle	. 25
8.	Operation method	. 25
	8.1 Power on/off and automatic shutdown	
	8.2 Test interface operation	. 25
	8.3 Setting menu interface operation	. 26
	8.4 Measurement steps 8.5 Data Storage	. 30
	8.5 Data Storage	. 30
	8.6 Data access and deletion	. 31
	8.7 Communicate with PC	. 32
	8. 8 Communicate with your smartphone or tablet	. 32
9.	Noise frequency avoidance function	. 32
	9.1 Applicable occasions	. 32
	9.2 Open/Close	. 32
	9.3 Single/Cycle Identification of Noise Frequency	. 33
10.	Maintenance and Service	. 33
	10.1 Batteries	. 33
	10.2 Repair , inspection and cleaning	. 33
	10.3 Frequently Asked Questions	. 35
11.	Packing List	. 34
	Appendix	
	Appendix 1 Effects of Eddy Currents	
	Appendix 2: Effect of Extended Test Leads and Inductive Voltage	. 36

1. Safety rules and precautions

Thank you for purchasing our company's **universal rechargeable battery internal resistance tester**. Before you use the instrument for the first time, in order to avoid possible electric shock or personal injury, please be sure to: **carefully read and strictly abide by the safety rules and precautions listed in this manual.**

- \diamond Please pay attention to the +/- polarity of the battery and do not install it in reverse.
- \diamond The measured battery voltage should not exceed the upper limit of the instrument.
- ☆ If the meter displays the low battery voltage symbol "□", it should be charged in time, otherwise it will cause measurement errors.
- \diamond When not in use for a long time, fully charge it every three months to ensure battery health.
- \diamond Do not measure while charging as there will be signal interference.
- This instrument is designed, manufactured and tested according to IEC61010 safety standards.
- When measuring, do not use high-frequency signal generators such as mobile phones near the instrument to avoid errors.
- \diamond Pay attention to the labels and symbols on the instrument body.
- \diamond Before use, make sure the instrument and its accessories are in good condition.
- Do not place or store the instrument for a long time in a hot and humid place, a place with condensation or under direct sunlight.
- ♦ Pay attention to the measuring range and operating environment specified for this instrument.
- ♦ The use, disassembly, calibration and maintenance of this instrument must be performed by authorized personnel.
- If continued use of the instrument is dangerous due to the instrument's condition, stop using it immediately and seal it up immediately. Handled by an authorized agency.
- The "_____ " safety warning signs in the instrument and manual indicate that users must strictly follow the contents of this manual.Perform safe operations.
- \diamond In any case, special attention should be paid to safety when using this instrument.

2. Introduction

The universal rechargeable battery internal resistance tester is referred to as The battery internal resistance tester. It is a measuring instrument used to measure the internal resistance and voltage of rechargeable batteries such as lead-acid batteries and lithium batteries to determine the health status of the battery. It can also be used as an instrument to measure the ESR parameters of electrolytic capacitors (for reference only). This instrument uses the AC 4-terminal test method to measure the internal resistance of the battery. It can measure the correct measurement value without being affected by the contact resistance between the test line, terminals and battery electrodes. It also has functions such as data storage, data review, alarm, and automatic shutdown. The whole machine is high-end and beautiful, with a wide range, high resolution, convenient operation, easy to carry, accurate, reliable, stable performance, and strong anti-interference ability. It is an indispensable instrument for battery production, battery installation, equipment production, equipment maintenance and other scenarios.

The universal rechargeable battery internal resistance tester is controlled by a microprocessor, and the internal 16-bit A DC can accurately detect the battery internal resistance and voltage. Its features are that it can measure without stopping the UPS system, using AC low resistance measurement and noise reduction technology, and it does not need to stop the normal

operation of the device under test. It can measure in the running state, which greatly shortens the test time. It also has the functions of data storage, bar graph display, data upload to computers, mobile phones, tablets and other smart devices through Bluetooth connection for wireless measurement, data access, etc.

3. Range and accuracy

Accuracy	Accuracy guaranteed temperature and humidity range: 23 ° C ±5 °C, 80 %		
guarantee	RH or less		
conditions	Warm-up time: No need		
Temperature	The operating temperature range plus the test accuracy of $\times 0.1$ / °C		
characteristics	(outside 18 °C~ 28 °C)		
	Measuring current accuracy: ±25%		
Excitation	Normal mode: 1000Hz ± 5Hz Noise avoidance frequency mode: 920Hz ~		
signal	1080Hz automatic frequency conversion (Use multi-stage noise reduction technology to effectively filter out noise interference of different frequencies or nearly the same frequencies)		
accuracy			

3.1 Resistance measurement accuracy

Range	Maximum display	Resolution	Test accuracy	Measuring
				current
3 mΩ	3.100 mΩ	1 uΩ	±1 % fs . ±20 dgt.	200 mA
30 mΩ	31.00 mΩ	10 uΩ		200 mA
300 mΩ	310.0 mΩ	100 uΩ	±0.5 % fs . ±15 dgt.	20 mA
3 Ω	3.100 Ω	1 mΩ		2 mA

3.2 Voltage measurement accuracy

Range	Maximum display	Resolution	Test accuracy
7 V	± 7.100 V	1 m V	± 0.2 % fs . ±
70V	± 72.00 V	10mV	10dgt .

Hint:

The above accuracy guarantee is only limited to the factory standard test lead. When using non-standard test leads or extension leads, this accuracy table is also applicable after zero adjustment.

4. Technical Specifications

Function	Battery internal resistance measurement, battery voltage measurement			
Avoid noise frequency	Yes, automatic frequency conversion range 920Hz~1080Hz			
Accuracy guaranteed temperature and	23°C±5°C, below 75%rh			

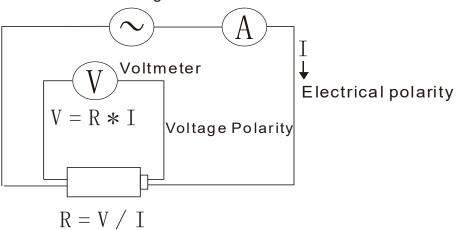
humidity		
	Input: 100-240V AC/50Hz/60Hz	
Charging adapter	Output: 0.8A/12.6V DC	
Battery	DC 11.1V Lithium Battery 2600mAh	
Resistance	1 μΩ	
resolution		
Voltage resolution	1 mV	
Maaaa	Internal resistance measurement: $0.000m\Omega \sim 3.000\Omega$ (4 ranges)	
Measuring range	Voltage measurement: 0.000V~±70.00V (2 ranges)	
Maximum input	DC 70V (between + and - terminals) AC input is not allowed	
voltage		
	Internal resistance measurement: 1kHz AC 4-terminal test method, open circuit terminal voltage 3 V max	
Measurement	Measuring current: 2.0mA ~ 200mA (different measuring	
method	currents for different ranges)	
	A/D conversion method: Successive approximation type	
	Display update frequency: 5 times per second	
Response time	2 00m s	
Measure time	About 2 seconds	
LCD Size	73.4mm×48.9mm / 3.5 inches (480 * 320 resolution 1 6 -bit true	
	color screen)	
Instrument size	Length, width and height: 170 mm × 115 mm × 65 mm	
Type-C interface	With Type-C interface, the stored data can be uploaded to the computer, saved and printed	
Bluetooth	Have	
connection		
Hold and store	Manual hold and storage, automatic hold and storage	
functions		
Measurement	Preset pass, warning, and fail thresholds	
	The battery level is displayed in 5 bars, and it reminds you to	
Power display	charge in time when the battery voltage is low	
Automatic	If the device is powered on and no operation is performed, it will	
shut-down	automatically shut down after 15 minutes by default (you can	
Dewer	change the time or turn it off in the settings)	
Power consumption	150 mA MIN / 250 mA MAX	
Quality	Instrument weight: 674.0g (including battery)	
Working		
temperature and humidity	-10°C~40°C; below 80%RH	
Storage		
temperature and -20°C~60°C; below 70%RH		
humidity		
Insulation	20M Ω or more (500V between circuit and housing)	
resistance		

Pressure resistance	AC 3700V/RMS (between circuit and housing)	
External magnetic	<40A/m	
field		
External electric	<1V/m	
field		
Suitable for safety	IEC 61010	
regulations		

5. Instrument structure

6.1 Interface Icons and Symbols

	Indicates the remaining power and charging status of the	
	instrument battery	
APO	Indicates that the automatic shutdown function is currently	
	turned on for the instrument	
4	Indicates that the Bluetooth data is turned on for the current	
*	instrument, and is turned off by default when powered on	
AHOLD	Indicates that the instrument has automatically saved data	
HOLD	Indicates that the instrument has manually saved data	
A.21	Indicates that the current storage is A, and there are 21	
A.21	groups of data in storage A	
	If a single storage is full and 500 groups are stored and	
FULL	measurement is continued, the screen will display "FULL" and	
	no more data will be stored.	
FAIL	Indicates that the current measurement result is judged as	


	failed	
WARNING	Indicates that the current measurement result is judged as a	
	warning	
PASS	Indicates that the current measurement result is judged as	
FA00	passed	
OADJ	Indicates that the initial line resistance has been subtracted	
	from the current measurement result	
FREQ	The flashing symbol indicates that the frequency is changing	
	and the interference frequency is being identified.	
	Normal mode: Indicates that the software filtering function	
	has been turned on. The digital changes are slower than in	
	normal mode and are turned off by default.	
	NOICE mode: indicates that the rolling mode is turned on,	
AML, SF	that is, the interference frequency is identified cyclically and	
4444-	the interference frequency test is avoided. If it is not turned	
	on, the interference frequency is only identified for the first	
	time, and then the interference frequency test is avoided all	
	the time. It is turned off by default when the power is turned	
	on.	
	Indicates that the current mode is to avoid interference	
NUTSE		
	Indicates that the instrument has turned on the automatic shift	
OAuto	function, which is turned on by default when the instrument is	
	turned on.	
	Indicates that the current measured voltage has exceeded the	
	human safety voltage, please pay attention to safety	

7. Measurement principle

7.1 Principle of AC 4-terminal test method

An AC current I with a frequency of 1kHz flows between the positive and negative electrodes of the battery, and the AC voltage difference V between the positive and negative electrodes of the battery is measured. The internal resistance of the battery is calculated according to the formula $\mathbf{R=V/I}$. To ensure the measurement accuracy, the two current electrodes (C) and the two voltage electrodes (P) should contact the positive and negative electrodes of the battery independently, so as to obtain the correct measurement value without being affected by the wire resistance or contact resistance.

Rated current generator

7.2 Voltage Measurement Principle

After sampling the resistor voltage division and filtering out the noise, ADC sampling is performed and the measured value is obtained through program calculation and correction.

8. Operation method

8.1 Power on/off and automatic shutdown

• Long press Realize power on and off.

• The automatic shutdown function is turned on. If no key is pressed after the power is turned on , the meter will automatically shut down when the set time is reached to save power. If any key is pressed during this period, the shutdown time will be recalculated. This function can be turned off in the settings or the automatic shutdown time can be changed. The factory default is 15 minutes to shut down. When turned on, the status bar displays APO icon .

8.2 Test interface operation

In the test interface, you can view the current instrument time, measurement value and instrument status information. The functions of the operation buttons are as follows:

Key Symbols	Short press	Long Press
HOLD	Data hold	
SET	Enter the settings	
	menu	
	Resistance	
	measurement shift	
	Voltage measurement	Display voltage (+ press
	shift	OK to reset)
	Zero or cancel zero	
	Turn automatic	
G	shifting on or off	
	(No storage when	
	power off)	
	Enter data reading	Delete the latest cached
0	mode	data in HOLD mode

	Turn Bluetooth on or off	
ОК	Enable or disable software filtering	NOICE/Normal mode switch

8.3 Setting menu interface operation

On the test interface, press **SET** Enter the setting directory interface, where you can select the items to be set and view the basic information of the instrument . The menu interface includes 1:Language setting, 2: Threshold setting, 3: Alarm setting, 4: Storage setting, 5: Shift mode, 6: Clock setting, 7: Energy saving setting, and 8: About the instrument .

Operation flow example: first press to SET enter the menu interface (make sure to press in the test interface SET) -> press (/ Move cursor to select (1: Language setting, 2: Threshold setting, 3: Alarm setting, 4: Storage setting, 5: Shift mode, 6: Clock setting, 7: Energy

saving setting, 8: Instrument options) -> Press \square to enter the option where the cursor is. You can cancel the setting by pressing \square return.

Key Symbols	Short Press
	Select the item you want to set
ОК	Enter into
SET	Return

1) Language settings

The language setting is used to change the displayed language and supports Simplified Chinese and English.

Set the process instance: First enter the interface (1 (language setting) of the menu interface) -> press (2) / (5) Switch the cursor to select the setting option (Simplified Chinese)/(English) -> By pressing (1) The changes can be saved and the user can return to the menu.

Key Symbols	Short press
$\textcircled{\ }\overline{}$	Select Settings
ОК	Save and return
SET	Return

key functions of this interface are as follows:

2) Threshold settings

The threshold setting interface can set the thresholds for judging the test results as pass, warning, and fail. Setting appropriate thresholds can improve the judgment efficiency and test efficiency. The resistance threshold setting range is 0-3000 m Ω , and the voltage setting range is 0-70.0V. The settable thresholds are resistance: pass, fail , warning thresholds, and voltage: warning, pass thresholds.

To set a process instance : First, enter this interface (2 (threshold setting) in the menu interface) -> press \bigcirc / \bigcirc to switch the setting item to be set (Resistance: Pass , Warning and Fail Thresholds / Voltage: Warning, Pass Thresholds) -> By pressing \bigcirc Enter the required setting item -> By pressing \bigcirc / \bigcirc You can choose to set the threshold in thousands, hundreds, tens, or units ->By pressing \bigcirc / \bigcirc Implementing addition and subtraction of values -> By pressing \bigcirc Save the threshold and return to the previous interface -> By pressing \bigcirc You can save and return to the menu interface. You can cancel the setting by pressing \bigcirc return.

The key functions of this interface are as follows.			
Key Symbols	Short press		
\bigcirc	Toggle Settings		
ОК	Enter or exit the current sett	ing item	
Θ	Digital displacement	\sim	
	Add or subtract values		
SET	Save and Return/Return		

The key functions of this interface are as follows:

3) Alarm settings

The alarm setting interface can be used to set the buzzer prompt mode when the test is completed. The optional alarm types are 1: pass (ON(open) / OFF (closed)), 2: warning / failure (ON (open) / OFF (closed)),

Set the process instance: First enter this interface (3 (Alarm Settings) in the menu interface -> press / To switch the cursor to select the alarm function options((Pass)/(Warning/Failure), -> (Pass) By pressing Switch (ON/OFF) -> (Warning/Failure)) by pressing Switch (ON/OFF) -> By pressing Surf (ON/OFF) -> By pressing Surf (ON/OFF) -> save and return to the menu interface. You can cancel the setting by pressing SET return.

	The key functior	ns of this	interface	are as follows:
--	------------------	------------	-----------	-----------------

Key Symbols	Short press
	Switch alarm function
ОК	Change settings
SET	Save and Return / Return

4) Storage Settings

The storage setting interface can set the hold, storage mode, and storage selection. There are ten memories A BCDEFGHIJ to choose from. If the current storage has stored 500 sets of data, it will prompt that the storage is full (**FULL** symbol) when storing data. You need to manually set other memories or delete the current storage data before storing new measurement data. There are three functions that can be set, 1: automatic hold (ON (open) / OFF (closed)), 2: hold storage (ON (open) / OFF (closed)), 3: current

Set up the process instance:

Auto hold: First enter this interface (4 (Storage Settings) on the menu interface) -> Press \bigcirc / \bigcirc To switch the cursor to auto-hold option -> By pressing \boxdot Can switch Automatic hold status (ON/OFF -> By pressing \bigcirc Can be saved and Return to the menu interface.

Hold storage: First enter this interface (4 (Storage Settings) of the menu interface) -> press \bigcirc / \bigcirc To switch the cursor to the option to hold the storage-> by pressing \bigcirc Can switch hold the storage status (ON/OFF -> by pressing \bigcirc Can be saved and Return to the menu interface.

Current storage: First enter this interface (4 (Storage Settings) of the menu interface) -> press () / () To switch the cursor to the current storage option ->

press \blacksquare to display the storage number -> press \bigcirc / \bigcirc Change the cursor to

select storage (for example:the number in the lower right corner indicates how many groups of data are cached in the current storage, and a total of 10 memories can be switched:ABCDEFGHIJ) - > By pressing Select the storage indicated by the cursor as the current storage and return to the previous interface -> By pressing SET Can be saved And return to the menu interface.Cancel the setting by pressing SET return.

	Select Settings
OK	Change settings or select storage
$\bigcirc \bigcirc \bigcirc$	Select Other storage
SET	Save and Return / Return

The key functions of this interface are as follows:

5) Shift mode

The shift mode setting interface allows you to select manual shift or automatic shift measurement mode.

Test interface display **Control** The icon indicates that the machine has turned on the automatic shift function.

Set the process instance: First enter this interface (5 (shift mode) of the menu interface) -> press () / () Toggle cursor to select setting option (Automatic shift)

/(Manual shift) -> By pressing Save and return to the menu interface. To cancel the setting , SET press return.

The key functions of this interface are as follows.			
Key Symbols	Short press		
	Toggle setting item selection status		
ОК	Save and return		

The key functions of this interface are as follows:

SET	Return
-----	--------

6) Clock Settings

The clock setting interface can be used to set the instrument time. The time display format of this instrument is XX (year)-XX (month)-XX (day) XX (hour): X X (minute): X X (second). You can also connect the computer or mobile phone to synchronize the instrument time with one click through our company's supporting software.

Set the process instance : First enter this interface (6 (Clock Setting) of the menu

interface) -> press \bigtriangleup / \boxdot / \bigodot / \bigodot / \circlearrowright You can select year, month, day, hour, minute,

second (the cursor indicates the current selection) -> By pressing $\ensuremath{\mbox{\tiny CK}}$, You can enter

the value modification interface of the current selection (year, month, day, hour, minute,

second) -> By pressing O / O You can select the tens or ones -> by pressing O /

 \bigcirc You can modify the value of the tens or ones digit \rightarrow By pressing \boxdot , You can save

the current setting value (not effective at this time) and return to the previous interface -> By pressing Hold The current setting time can be effective (you can set the year, month, day, hour, minute, and second Hold according to your needs, and then press It is also possible) Display (effective) indicates that the setting is successful -> By pressing SET You can return to the menu interface. You can cancel the setting by pressing SET return.

Key Symbols 💊	Short press
	Select the item you want to set
ОК	Set selection items
\odot	Change the value of the selected value
\odot	Select other values
HOLD	The current setting time takes effect
SET	Return

The key functions of this interface are as follows:

7) Energy saving settings

The energy saving setting interface can set the instrument display brightness or turn the instrument's automatic shutdown function on or off.

Show PD The icon indicates that the machine has turned on the automatic shutdown function.

Setting process instance: First enter this interface (7 (Energy saving settings) of the menu interface) -> press \bigcirc / \bigcirc Switch the cursor to select the setting option

(Backlight)/(Auto Power Off) -> (Backlight) by pressing 🕙 / 🕑 Change backlight

brightness -> (Auto Power Off) by pressing \bigcirc / \bigcirc Set the automatic shutdown time (5, 15, 30 minutes or off) -> By pressing \bigcirc You can save and return to the menu interface. You can cancel the setting by pressing \bigcirc return .

Key Symbols	Short press
	Select Settings
$\bigcirc \bigcirc$	Change backlight brightness or auto-off time
SET	Save and Return / Return

The key functions of this interface are as follows:

8) About the instrument

On this page, you can view the basic information of the current instrument. Press **SET** You can return to the settings menu interface.

8.4 Measurement steps

Internal resistance measurement:

1) Connect the test line to the instrument, and connect the indicator mark (small arrow) of the test line to the indicator mark (small arrow) on the instrument according to the color.

2) Set the instrument parameters, refer to 8.3.1 and 8.3.2.

3) If you use a test lead other than the standard one, short-circuit the four-wire clamps of the test lead and press (Arrow Key zero calibration.

4) Clip the test leads to the battery electrodes and the instrument starts testing.

5) Wait for the value to stabilize and then read the test result.

Voltage measurement:

This meter can also be used as a DC voltmeter. Just connect the two red and black interfaces in the middle to measure the DC voltage. Be careful not to measure AC voltage or DC voltage exceeding 70V.

(When the resistance displays "-----", the voltage must be greater than 0.1V to display the value, otherwise only the "-----" symbol will be displayed).

(When there is residual voltage or measurement deviation after short-circuiting the test leads V+ V-, you can manually adjust the voltage to zero. The operation method is to first short-circuit the test leads V+ V-, then long-press the "V"key, then press the "OK "key, and when you hear a beep from the buzzer, the zero adjustment is complete).

8.5 Data Storage

The data storage function requires the "Hold storage" function to be turned on in the settings (please refer to Section 8.3), which is turned on by default at the factory. Each time a manual HOLD or automatic HOLD is performed, a set of data will be automatically numbered and stored.

This instrument has 10 data storage devices, numbered $A \sim J$ can be selected in the settings, and all storage devices can store 5,000 data records when they are full .

It should be noted that when a storage is full of 500 groups and continues to measure, the HOLD data is no longer saved in the storage. The user needs to manually switch to another storage or delete the data in the storage before saving.

records/items 500 500
500
500
500
500
500
500
500
500
500

8.6 Data access and deletion

On the test page, press I Press the key to enter the Reader Selection interface. You can operate the instrument according to the page prompts to select the reader and enter the bar graph interface. In the Reader Selection interface, press A key to delete the current reader data. You can choose whether to delete according to the prompt.

As shown in Figure 8-1, the bar graph interface can display 10 measurement records per page, which can intuitively analyze the internal resistance of batch batteries. O key or O The key moves the reading cursor left and right. The item selected by the cursor can read the specific information of battery internal resistance, voltage and test time. O key or O By pressing SET Can be returned.

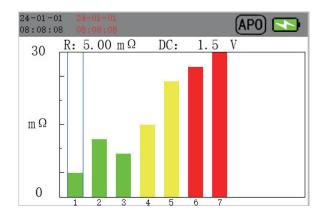


Figure 8-1 Data reading interface

8.7 Communicate with PC

Before use, please confirm:

- 1. The USB driver has been installed.
- 2. The computer has the host computer software and EXCEL software installed.

Use the included USB Type-C communication cable to connect the meter and the computer. After opening the software, it will automatically search for the COM port and connect automatically. You may need to wait for a few seconds to more than ten seconds. After the connection is successful, you can realize functions such as reading real-time measurement values, reading historical measurement records, and synchronizing computer time to the meter.

8. 8 Communicate with your smartphone or tablet

Please confirm before use:

- 1. The system version of your mobile phone or tablet is Android 5.0 or above.
- 2. The "Battery Internal Resistance Tester" APP is installed in the smart device.

In the measurement interface of the instrument, press igodot Turn on the Bluetooth function on

the smartphone and open the APP. Search for "BRT " (Battery Resistance Tester) and connect. After the connection is successful, wireless measurement and data browsing functions can be realized.

9. Noise frequency avoidance function

9.1 Applicable occasions

Generally, when measuring the battery of a UPS or battery uninterruptible power supply, the noise frequency of 1000Hz or near 1000Hz generated by the load overlaps with the measurement frequency of this unit, resulting in unstable measurement. This function can be turned on to automatically avoid the noise frequency.

9.2 Open/Close

In normal mode, long press the button 🖾 to turn it on, and long press it again to exit.

After turning on, **NOISE** the icon displayed indicates that the current mode is to avoid noise

frequency. Flashing means that the frequency is being changed and the interference

frequency is being identified. **FREO** Stopping flashing and disappearing means that the noise

frequency has been avoided and the internal resistance is being tested. The progress of a complete test is indicated by the red progress bar at the bottom of the screen.

(The longest time for one round of measurement: 1.5s*3*18+1=82s. The longest time for one round of measurement is about 82 seconds. This is when there is no interference).

(The fastest time for one round of measurement: 1.5s*2+1=4s. The shortest time for one round of measurement is about 4 seconds. This is when the interference is very close to 1000Hz).

Tip: This mode takes a long time to test. If you are sure there is no noise frequency, please do not use this function.

After completing a measurement, there are 4 frequency test displays below the icon, in order:

- 1. The difference between the first round output frequency and the noise frequency.
- 2. The difference between the second round output frequency and the noise frequency.
- 3. The estimated noise frequency.
- 4. The frequency of this test.

Sometimes, due to the specific situation of the noise, it may not be possible to avoid all noise frequencies. When the noise frequency identification fails, the above 1/2/3 items will

display Fail, and the progress bar will turn yellow. At this time, you can press and hold 3 key or

Use the key to manually select the measurement frequency and choose a relatively stable value as the result.

9.3 Single/Cycle Identification of Noise Frequency

After turning on the noise avoidance frequency mode, short press I the key to turn on or off the rolling measurement, that is, cyclically identify the interference frequency and avoid the interference frequency test III. The icon will be displayed after turning it on; if it is not turned on, it will only identify the interference frequency for the first time, and then avoid the interference frequency test all the time. It is turned off by default.

10. Maintenance and Service

10.1 Battery Charging

This product has a built-in rechargeable lithium battery pack (11.1V,2600mAh), please use the special lithium battery charger (12.6V,0.8A) that comes with the product standard to charge. (Figure 10-1)

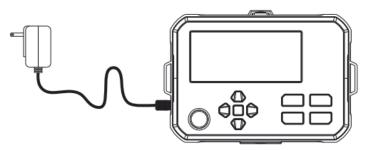


Figure 10-1 Charging diagram

When charging, when the product is turned on, the power indicator will turn into a breathing lamp state (it is always on without charging). The charging symbol "See" will also appear in the upper right corner of the screen. When the battery is fully charged, the battery status symbol "Time" in the upper right corner of the screen changes to Full charge.

The mapping between the battery charge identifier and the battery voltage is as follows:

	Symbol	Battery voltage	
--	--------	-----------------	--

9.6~10.1V		
10.1~10.6V		
10.6~11.1V		
11.1~11.6V		
11.6~12.1V		
>12.1V		

Note: When charging in the off state, the power lamp has no prompt, and there is no charging information on the screen. If the battery is full, please turn on and observe the battery power information on the screen.

- 1) When the battery voltage is lower than 9.6V, the battery symbol "I" flashes to indicate that the battery is low. After one minute, the battery will be forcibly shut down to protect the battery. Please charge the battery in time to ensure the measurement accuracy.
- 2) Charging from Charge to Mathematical About 5 hours.
- 3) When the battery is fully charged, it can be used continuously for 4 to 8 hours. The screen brightness and power consumption under different loads are also different. Assuming that the 3Ω range is always used and the screen brightness is adjusted to the lowest, the maximum usage time is about 8 hours due to the minimum output current.
- 4) If the screen flashes and then goes black when the device is turned on, the battery may not be sufficient to turn it on. Please fully charge the device before starting measurement.
- 5) The battery life of a new meter is about 500 charge and discharge cycles. When the battery is no longer durable, contact the meter dealer for a replacement. Do not replace it by yourself.

10.2 Repair , inspection and cleaning

warn

Please do not modify, disassemble or repair the product. This may cause fire, electric shock or personal injury. If you disassemble or modify the product yourself, you will be deemed to have waived the one-year free warranty service.

1) Correction

The calibration cycle varies depending on the customer's usage conditions and environment. We recommend that you determine the calibration cycle based on the customer's usage conditions and environment and entrust us to perform calibration regularly.

2) Clean

To remove dirt from the instrument, use a soft cloth dampened with a small amount of water or neutral detergent and wipe it gently. Use a dry soft cloth to gently wipe the display area. Please do not use gasoline, alcohol, acetone, ether, ketone, thinners and detergents containing gasoline. Otherwise, it will cause the instrument to deform or discolor.

3) Transportation

To avoid secondary damage caused by impact during transportation, please be sure to double pack. We do not guarantee damage caused by transportation.

When returning the instrument for repair, please write down the fault details, return address, contact person, telephone number and other necessary information on a piece of paper and

attach it to the instrument and send it back to us.

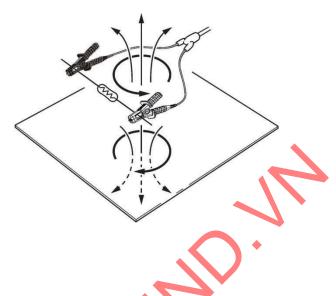
10.3 Frequently Asked Questions

Question	Answer	
Why is the instrument time	The internal clock system is powered by the instrument	
inaccurate?	battery, not the button battery, so the clock system needs to	
	be fully charged to work properly. It should be charged	
	every 3 months when not in use for a long time.	
" " always appear during	Please check whether the test line is well connected and	
measurement ?	whether the interface is plugged in to the bottom. Generally,	
	" " will be displayed only when the circuit is not	
	connected.	
What does it mean when it	The measurement is out of range.	
says O L ?		
What battery capacity (Ah)	This instrument uses AC signal for measurement, and DC	
can have its internal	current will not flow into this instrument. Therefore, there is	
resistance and voltage	no limit on the capacity (Ah) of the battery being tested.	
measured?		

11. Packing List

11. Packing List			
Name	Specification	Quantity	
Meter	UT677A+ Battery internal resistance	1 set	
Test line	Double-ended clip test line length: 1.5 meters	1 set	
Communication line	USB Type-C Cable length: 1 meter	1	
Charging adapter	Input: 100-240V AC/50Hz/60Hz Output: 0.8A/12.6V DC	1	
Battery	DC 11.1V Lithium Battery 2600mAh	1 (installed in the machine)	
Manual	Instructions in Chinese and English	1 set	
Color Box	*	1	
Warranty certificate	*	1 piece	

12. Appendix


Appendix 1 Effects of Eddy Currents

The AC current generated by this instrument induces eddy currents in nearby metal plates.

This eddy current induces an induced voltage in the test line.

Since the induced voltage has a phase angle of 180 degrees different from the AC current (reference signal), it cannot be eliminated by synchronous detection, resulting in measurement errors.

The influence of eddy current is a phenomenon unique to resistance meters that perform AC measurements. To avoid this influence, do not place a metal plate near the test lead (where it branches into two), and avoid getting close to a metal plate.

Appendix 2: Effect of Extended Test Leads and Inductive Voltage

The quality and shape of the test cable have a certain impact on the measurement results. If you need to extend the test line, please use the test cable recommended by our company.

Methods for reducing induced voltage

Since this instrument uses AC to measure small resistances, it is susceptible to the influence of induced voltage. The induced voltage here refers to the voltage that the current generated by this instrument affects the signal system through the electromagnetic coupling formed inside the wire.

Since the induced voltage and the AC current (reference signal) have a 90 - degree phase difference, the synchronous detection circuit can completely eliminate it when the level is small, but when the level is large, it will cause signal distortion and cannot perform correct synchronous detection. The extension of the test line will increase the induced voltage, so to reduce the level of the induced voltage, the length of the test line must be shortened as much as possible. In particular, shortening the bifurcated part will have a better effect. Even if a standard test line is used, if the lead configuration changes significantly between zero adjustment and range adjustment at the 3 m Ω range, the measured value will fluctuate by about 20dgt. due to the influence of the induced voltage.